Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT AimHalting widespread biodiversity loss will require detailed information on species' trends and the habitat conditions correlated with population declines. However, constraints on conventional monitoring programs and commonplace approaches for trend estimation can make it difficult to obtain such information across species' ranges. Here, we demonstrate how recent developments in machine learning and model interpretation, combined with data sources derived from participatory science, enable landscape‐scale inferences on the habitat correlates of population trends across broad spatial extents. LocationWorldwide, with a case study in the western United States. MethodsWe used interpretable machine learning to understand the relationships between land cover and spatially explicit bird population trends. Using a case study with three passerine birds in the western U.S. and spatially explicit trends derived from eBird data, we explore the potential impacts of simulated land cover modification while evaluating potential co‐benefits among species. ResultsOur analysis revealed complex, non‐linear relationships between land cover variables and species' population trends as well as substantial interspecific variation in those relationships. Areas with the most positive impacts from a simulated land cover modification overlapped for two species, but these changes had little effect on the third species. Main ConclusionsThis framework can help conservation practitioners identify important relationships between species trends and habitat while also highlighting areas where potential modifications to the landscape could bring the biggest benefits. The analysis is transferable to hundreds of species worldwide with spatially explicit trend estimates, allowing inference across multiple species at scales that are tractable for management to combat species declines.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Effective solutions to conserve biodiversity require accurate community‐ and species‐level information at relevant, actionable scales and across entire species' distributions. However, data and methodological constraints have limited our ability to provide such information in robust ways. Herein we employ a Deep‐Reasoning Network implementation of the Deep Multivariate Probit Model (DMVP‐DRNets), an end‐to‐end deep neural network framework, to exploit large observational and environmental data sets together and estimate landscape‐scale species diversity and composition at continental extents. We present results from a novel year‐round analysis of North American avifauna using data from over nine million eBird checklists and 72 environmental covariates. We highlight the utility of our information by identifying critical areas of high species diversity for a single group of conservation concern, the North American wood warblers, while capturing spatiotemporal variation in species' environmental associations and interspecific interactions. In so doing, we demonstrate the type of accurate, high‐resolution information on biodiversity that deep learning approaches such as DMVP‐DRNets can provide and that is needed to inform ecological research and conservation decision‐making at multiple scales.more » « less
-
Abstract Data deficiencies among rare or cryptic species preclude assessment of community‐level processes using many existing approaches, limiting our understanding of the trends and stressors for large numbers of species. Yet evaluating the dynamics of whole communities, not just common or charismatic species, is critical to understanding and the responses of biodiversity to ongoing environmental pressures.A recent surge in both public science and government‐funded data collection efforts has led to a wealth of biodiversity data. However, these data collection programmes use a wide range of sampling protocols (from unstructured, opportunistic observations of wildlife to well‐structured, design‐based programmes) and record information at a variety of spatiotemporal scales. As a result, available biodiversity data vary substantially in quantity and information content, which must be carefully reconciled for meaningful ecological analysis.Hierarchical modelling, including single‐species integrated models and hierarchical community models, has improved our ability to assess and predict biodiversity trends and processes. Here, we highlight the emerging ‘integrated community modelling’ framework that combines both data integration and community modelling to improve inferences on species‐ and community‐level dynamics.We illustrate the framework with a series of worked examples. Our three case studies demonstrate how integrated community models can be used to extend the geographic scope when evaluating species distributions and community‐level richness patterns; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species. We implemented these worked examples using multiple software methods through the R platform via packages with formula‐based interfaces and through development of custom code in JAGS, NIMBLE and Stan.Integrated community models provide an exciting approach to model biological and observational processes for multiple species using multiple data types and sources simultaneously, thus accounting for uncertainty and sampling error within a unified framework. By leveraging the combined benefits of both data integration and community modelling, integrated community models can produce valuable information about both common and rare species as well as community‐level dynamics, allowing for holistic evaluation of the effects of global change on biodiversity.more » « less
-
Abstract Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable.However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector‐specific biases that can impose severe limitations to using NHC data for evaluating population trajectories.Here we review the challenges associated with using museum records to track long‐term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities.Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long‐term trends of insect populations and identify cases where that is not possible using existing data sources.more » « less
An official website of the United States government
